skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tomkins, Andrew."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sequential behavior such as sending emails, gathering in groups, tagging posts, or authoring academic papers may be characterized by a set of recipients, attendees, tags, or coauthors respectively. Such Å‚sequences of sets" show complex repetition behavior, sometimes repeating prior sets wholesale, and sometimes creating new sets from partial copies or partial merges of earlier sets. In this paper, we provide a stochastic model to capture these pat- terns. The model has two classes of parameters. First, a correlation parameter determines how much of an earlier set will contribute to a future set. Second, a vector of recency parameters captures the fact that a set in a sequence is more similar to recent sets than more distant ones. Comparing against a strong baseline, we ind that modeling both correlation and recency structures are required for high accuracy. We also ind that both parameter classes vary widely across domains, so must be optimized on a per-dataset basis. We present the model in detail, provide a theoretical examination of its asymptotic behavior, and perform a set of detailed experiments on its predictive performance. 
    more » « less